Matrix Product Approximation

Matrix Product Sketching via Coordinated Sampling
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Threshold Sampling - Sketch Size Only Bounded in Expectation
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Prior Work - Sketch Setting

Fact.[1,2,3] Let I €kXn he a scaled random Gaussian matrix, random sign matrix, CountSketch matrix

[4] or any of a variety of other randomized linear embeddings. If kK = O (
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Our Result

Algorithm 4 Threshold Sampling

Input: Matrix A of size n X d, random seed s, target number of row samples, k.
Output: Sketch S(A) = {Za, Va,Ta }, where Z4 is a subset of row indices from {1,...,n} and
Va contains A; for all 7 € Za.

. Use random seed s to select a uniformly random hash function 4 : {1,...,n} — |0, 1].
. Initialize Zp and VA to be empty lists.
. forie1,...,ndo

Set threshold 7, = k& -
if h(2) < 7; then
Append ¢ to Za, append A ; to V.
return S(A) = {Za,Va,7a} where 7o = k/||A||%.
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Coordinated Sampling Method - Algorithm 1

Main Theorem. Consider A €"%9 B €™ and any ¢,5 € (0,1). There is a sketching procedure

/6

(Algorithm 1) that constructs sketches S(A) and S(B) consisting of at most k = 26—2 + 1 rows from
A and B, and there is a corresponding estimation procedure (Algorithm 2) that, using the information

in these sketches, returns an estimate W such that, with probability 1 — ¢,
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Like threshold sampling, coordinated sampling selects rows with probability proportional to row norms.
Intuition: Rows with higher norms tend to contribute more to the product. However, coordinated sampling
method dynamically set the threshold to collect exactly k samples.

Routine - Algorithm 2

= We want a sketch for A to be interoperable
with sketches for B, C, D, E, and any other
matrices we might see in the future.

= Multi-vector retrieval application.

» Regression-based dataset search application.

Product Approximation on Attention Matrices
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The matrices  and K are generated from prompt tokens. As matrices sparsity increases from left to
right, our method outperforms prior work.

Extension to Sketched Regression

Sketched Regression. There is a procedure that constructs sketches S(A) and S(b) consisting of
O(d/e) row samples from A €9 and b € such that, using only the information in those sketches,
we can compute X cd satisfying, with probability at least 99/100,
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Intuition: A" B = ¥;c11AB] ~ LicirwiAiB] = W
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Regression on Real World Dataset
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Android Reviews

Matrix A is generated via SPLADE [6] on 10,000 random reviews. Vector b represents the review scores.
As the matrices become sparser from left to right, our method improves over the best-known linear
sketching methods.
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